Solution

Elementary Number Theory Problems 3.3 Solution (David M. Burton's 7th Edition) - Q3 Members Public

Find all pairs of primes $p$ and $q$ satisfying $p - q = 3$.

Ran
Ran
Math

Elementary Number Theory Problems 3.3 Solution (David M. Burton's 7th Edition) - Q2 Members Public

(a) If $1$ is added to a product of twin primes, prove that a perfect square is always obtained. (b) Show that the sum of twin primes $p$ and $p + 2$ is divisible by $12$, provided that $p > 3$.

Ran
Ran
Math

Elementary Number Theory Problems 3.3 Solution (David M. Burton's 7th Edition) - Q1 Members Public

My Solution for "Verify that the integers $1949$ and $1951$ are twin primes."

Ran
Ran
Math

Elementary Number Theory Problems 3.2 Solution (David M. Burton's 7th Edition) Members Public

My solutions for Burton's Elementary Number Theory Problems 3.2 (7th Edition)

Ran
Ran
Math

Elementary Number Theory Problems 3.2 Solution (David M. Burton's 7th Edition) - Q14 Members Public

My Solution for "Use the previous problem to obtain the prime factors of the repunit $R10$."

Ran
Ran
Math

Elementary Number Theory Problems 3.2 Solution (David M. Burton's 7th Edition) - Q13 Members Public

My Solution for "For the repunits $R_{n}$, verify the assertions below: (a) If $n \mid m$, then $R_{n} \mid R_{m}$. (b) If $d \mid R_{n}$ and $d \mid R_{m}$, then $d \mid R_{n+m}$.[Hint: Show that $R_{m+n} = R_{n}10^{m} + R_{m}$.] (c) If $gcd(n, m) = 1$, then $gcd(R_{n}, R_{m})= 1$."

Ran
Ran
Math

Elementary Number Theory Problems 3.2 Solution (David M. Burton's 7th Edition) - Q12 Members Public

Assuming that $p_{n}$ is the $n$th prime number, prove:(a) $p_{n} > 2n - 1$ for $n \geq 5$.(b) None of the integers $P_{n} = p_{1}p_{2} \cdots p_{n} + 1$ is a perfect square. (c) The sum $\frac{1}{p_{1}} + \frac{1}{p_{2}} + \cdots + \frac{1}{p_{n}}$ is never an integer.

Ran
Ran
Math

Elementary Number Theory Problems 3.2 Solution (David M. Burton's 7th Edition) - Q11 Members Public

My Solution for "If $p_{n}$ denotes the $n$th prime number, put $d_{n} = p_{n+1} - p_{n}$. An open question is whether the equation $d_{n} = d_{n + 1}$ has infinitely many solutions. Give five solutions."

Ran
Ran
Math