Elementary Number Theory Problems 3.3 Solution (David M. Burton's 7th Edition)

My solutions for Burton's Elementary Number Theory Problems 3.3 (7th Edition)

Ran
Ran

Table of Contents

Background

These are my solutions while I was studying number theory using this book. I will use the theorems and definitions mentioned in the book.

If you don't have the book or are unsure which theorem or definition I am using here, you can check out this article, where I listed all theorems, corollaries, and definitions by following the book's order.

Theorems and Corollaries in Elementary Number Theory
All theorems and corollaries mentioned in David M. Burton’s Elementary Number Theory are listed by following the book’s order. (7th Edition) (Currently Ch 1 - 4)

If you haven't heard of this book and are interested in learning number theory, I strongly recommend it since it is quite friendly for beginners. You can check out the book by this link:

Elementary Number Theory (Paperback)
Get it now:

I will only use theorems or facts that are proved before this chapter. So, you will not see that I quote theorems or facts from the later chapters.

All Problems in 3.2 (p. 49 - p. 50)

Q1

Verify that the integers $1949$ and $1951$ are twin primes.

Solution

Q2

(a) If $1$ is added to a product of twin primes, prove that a perfect square is always obtained.
(b) Show that the sum of twin primes $p$ and $p + 2$ is divisible by $12$, provided that $p > 3$.

Solution

Q3

Find all pairs of primes $p$ and $q$ satisfying $p - q = 3$.

Solution

Q4

Sylvester ($1896$) rephrased the Goldbach conjecture: Every even integer $2n$ greater than $4$ is the sum of two primes, one larger than $n/2$ and the other less than $3n/2$. Verify this version of the conjecture for all even integers between $6$ and $76$.

Solution

Q5

In 1752, Goldbach submitted the following conjecture to Euler: Every odd integer can be written in the form $p + 2a^2$, where $p$ is either a prime or $1$ and $a \geq 0$. Show that the integer $5777$ refutes this conjecture.

Solution

Q6

Prove that the Goldbach conjecture that every even integer greater than $2$ is the sum of two primes is equivalent to the statement that every integer greater than $5$ is the sum of three primes.
[Hint: If $2n - 2 =p_{1}+ p_{2}$, then $2n =p_{1}+ p_{2} + 2$ and $2n + 1 =p_{1}+ p_{2} + 3$.]

Solution

Q7

A conjecture of Lagrange ($1775$) asserts that every odd integer greater than $5$ can be written as a sum $p_{1} + 2p_{2}$, where $p_{1}$, $p_{2}$ are both primes. Confirm this for all odd integers through $75$.

Solution

Q8

Given a positive integer $n$, it can be shown that there exists an even integer $a$ that is representable as the sum of two odd primes in $n$ different ways. Confirm that the integers $60$, $78$, and $84$ can be written as the sum of two primes in six, seven, and eight ways, respectively.

Solution

Q9

(a) For $n > 3$, show that the integers $n$, $n + 2$, $n + 4$ cannot all be prime.
(b) Three integers $p$, $p + 2$, $p + 6$, which are all prime, are called a $\textit{prime-triplet}$. Find five sets of prime-triplets.

Solution

Q10

Establish that the sequence $$(n + 1)! - 2, (n + 1)! - 3, ... , (n + 1)! - (n + 1)$$ produces $n$ consecutive composite integers for $n > 2$.

Solution

Q11

Find the smallest positive integer $n$ for which the function $f(n) = n^2 + n + 17$ is composite. Do the same for the functions $g(n) = n^2 + 21n + 1$ and $h(n) = 3n^2 + 3n + 23$.

Solution

Q12

Let $p_{n}$ denote the $n$th prime number. For $n \geq 3$, prove that $p_{n+3}^{2} < p_{n}p_{n+1}p_{n+2}$.
[Hint: Note that $p_{n+3}^{2} < 4p_{n+2}^2 <8p_{n+1}p_{n+2}$.]

Solution

Q13

Apply the same method of proof as in Theorem 3.6 to show that there are infinitely many primes of the form $6n + 5$.

Solution

Q14

Find a prime divisor of the integer $N = 4(3 \cdot 7 \cdot 11) - 1$ of the form $4n + 3$. Do the same for $N = 4(3 \cdot 7 \cdot 11 \cdot 15) - 1$.

Solution

Q15

Another unanswered question is whether there exists an infinite number of sets of five consecutive odd integers of which four are primes. Find five such sets of integers.

Solution

Q16

Let the sequence of primes, with $1$ adjoined, be denoted by $p_{0} = 1, p_{1} = 2, p_{2} = 3, p_{3} = 5, ....$ For each $n \geq 1$, it is known that there exists a suitable choice of coefficients $\epsilon_{k} = \pm 1$ such that

$$ \begin{equation} \begin{split} p_{2n} = p_{2n - 1} + \sum_{k = 0}^{2n - 2} \epsilon_{k}p_{k} \qquad p_{2n + 1} = 2p_{2n} + \sum_{k = 0}^{2n - 1} \epsilon_{k}p_{k} \end{split} \nonumber \end{equation} $$

To illustrate:

$$ 13 = 1 + 2 - 3 - 5 + 7 + 11 $$

and

$$ 17 = 1 + 2 - 3 - 5 + 7 - 11 + 2 \cdot 13 $$

Determine similar representations for the primes $23, 29, 31,$ and $37$.

Solution

Q17

In $1848$, de Polignac claimed that every odd integer is the sum of a prime and a power of $2$. For example, $55 = 47 + 2^{3} = 23 + 2^{5}$. Show that the integers $509$ and $877$ discredit this claim.

Solution

Q18

(a) If $p$ is a prime and $p \not \mid b$, prove that in the arithmetic progression $$a, a + b, a + 2b, a + 3b, ...$$ every $pth$ term is divisible by $p$.
[Hint: Because $gcd(p, b) = 1$, there exist integers $r$ and $s$ satisfying $pr+ bs = 1$.
Put $n_{k} = kp - as$ for $k= 1, 2, ...$ and show that $p \mid (a+ n_{k}b)$.]
(b) From part (a), conclude that if $b$ is an odd integer, then every other term in the indicated progression is even.

Solution

Q19

In $1950$, it was proved that any integer $n > 9$ can be written as a sum of distinct odd primes. Express the integers $25$, $69$, $81$, and $125$ in this fashion.

Solution

Q20

If $p$ and $p^{2} + 8$ are both prime numbers, prove that $p^{3} + 4$ is also prime.

Solution

Q21

(a) For any integer $k > 0$, establish that the arithmetic progression $$a + b, a + 2b, a + 3b, ...$$ where $gcd(a, b) = 1$, contains $k$ consecutive terms that are composite.
[Hint: Put $n =(a+ b)(a + 2b) \cdots (a+ kb)$ and consider the $k$ terms $a+ (n + 1)b, a+ (n + 2)b, ... , a+ (n + k)b$.]
(b) Find five consecutive composite terms in the arithmetic progression $$6, 11, 16,21,26,31,36, ...$$

Solution

Q22

Show that $13$ is the largest prime that can divide two successive integers of the form $n^{2} + 3$.

Solution

Q23

(a) The arithmetic mean of the twin primes $5$ and $7$ is the triangular number $6$. Are there any other twin primes with a triangular mean?
(b) The arithmetic mean of the twin primes $3$ and $5$ is the perfect square $4$. Are there any other twin primes with a square mean?

Solution

Q24

Determine all twin primes $p$ and $q = p + 2$ for which $pq - 2$ is also prime.

Solution

Q25

Let $p_{n}$ denote the $n$th prime. For $n > 3$, show that $$p_{n} < p_{1} + p_{2} + \cdots + p_{n-1}$$
[Hint: Use induction and the Bertrand conjecture.]

Solution

Q26

Verify the following:
(a) There exist infinitely many primes ending in $33$, such as $233$, $433$, $733$, $1033, ....$
[Hint: Apply Dirichlet's theorem.]
(b) There exist infinitely many primes that do not belong to any pair of twin primes.
[Hint: Consider the arithmetic progression $21k + 5$ for $k= 1, 2, ....$ ]
(c) There exists a prime ending in as many consecutive $1$'s as desired.
[Hint: To obtain a prime ending in $n$ consecutive $1$'s, consider the arithmetic progression $10^{n}k +R_{n}$ for $k= 1, 2, ....$ ]
(d) There exist infinitely many primes that contain but do not end in the block of digits $123456789$.
[Hint: Consider the arithmetic progression $10^{n}k + 1234567891$ for $k= 1, 2, ....$]

Solution

Q27

Prove that for every $n \geq 2$ there exists a prime $p$ with $p \leq n < 2p$.
[Hint: In the case where $n = 2k + 1$, then by the Bertrand conjecture there exists a prime $p$ such that $k < p < 2k$.]

Solution

Q28

(a) If $n > 1$, show that $n!$ is never a perfect square.
(b) Find the values of $n \geq 1$ for which $$n! + (n + 1)! + (n + 2)!$$ is a perfect square.
[Hint: Note that $n! + (n + 1)! + (n + 2)! = n!(n + 2)^{2}$ .]

Solution

MathNumber TheorySolution

Ran

Comments