Elementary Number Theory Problems 3.2 Solution (David M. Burton's 7th Edition) - Q2

Ranblog Solution for "Employing the Sieve of Eratosthenes, obtain all the primes between 100 and 200."

Ran
Ran

Table of Contents

This is my solution for Chapter 3.2 Q2 in the book Elementary Number Theory 7th Edition written by David M. Burton.

Background

All theorems, corollaries, and definitions listed in the book's order:

Theorems and Corollaries in Elementary Number Theory (Ch 1 - 3)
All theorems and corollaries mentioned in David M. Burton’s Elementary Number Theory are listed by following the book’s order. (7th Edition) (Currently Ch 1 - 3)

I will only use theorems or facts that are proved before this chapter. So you will not see that I quote theorems or facts from the later chapters.

Question

Employing the Sieve of Eratosthenes, obtain all the primes between 100 and 200.

Solution

As $\sqrt{200} \approx 14.14$, we need to cross out all multiples of the primes that are $\leq 14$. Those primes are $2, 3, 5, 7, 11$, and $13$.

So, we list all integers from $100$ to $200$ and cross out all the multiples of $2, 3, 5, 7, 11$, and $13$.

\begin{array} {|r|r|} \hline 101 & \cancel{102} & 103 & \cancel{104} & \cancel{105} & \cancel{106} & 107 & \cancel{108} & 109 & \cancel{110} \\ \hline \cancel{111} & \cancel{112} & 113 & \cancel{114} & \cancel{115} & \cancel{116} & \cancel{117} & \cancel{118} & \cancel{119} & \cancel{120} \\ \hline \cancel{121} & \cancel{122} & \cancel{123} & \cancel{124} & \cancel{125} & \cancel{126} & 127 & \cancel{128} & \cancel{129} & \cancel{130} \\ \hline 131 & \cancel{132} & \cancel{133} & \cancel{134} & \cancel{135} & \cancel{136} & 137 & \cancel{138} & 139 & \cancel{140} \\ \hline \cancel{141} & \cancel{142} & \cancel{143} & \cancel{144} & \cancel{145} & \cancel{146} & \cancel{147} & \cancel{148} & 149 & \cancel{150} \\ \hline 151 & \cancel{152} & \cancel{153} & \cancel{154} & \cancel{155} & \cancel{156} & 157 & \cancel{158} & \cancel{159} & \cancel{160} \\ \hline \cancel{161} & \cancel{162} & 163 & \cancel{164} & \cancel{165} & \cancel{166} & 167 & \cancel{168} & \cancel{169} & \cancel{170} \\ \hline \cancel{171} & \cancel{172} & 173 & \cancel{174} & \cancel{175} & \cancel{176} & \cancel{177} & \cancel{178} & 179 & \cancel{180} \\ \hline 181 & \cancel{182} & \cancel{183} & \cancel{184} & \cancel{185} & \cancel{186} & \cancel{187} & \cancel{188} & \cancel{189} & \cancel{190} \\ \hline 191 & \cancel{192} & 193 & \cancel{194} & \cancel{195} & \cancel{196} & 197 & \cancel{198} & 199 & \cancel{200} \\ \hline \end{array}

The primes are $101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163,$ $167, 173, 181, 191, 193, 197$, and $199$.


Read More: All My Solutions for This Book

< Chapter 3.2, Q1 Chapter 3.2, Q3 >

MathNumber TheorySolution

Ran

Comments